Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Infect ; 84(1): 48-55, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1446863

ABSTRACT

Background Controlling the spread of SARS-CoV-2 is problematic because of transmission driven by asymptomatic and pre-symptomatic individuals. Community screening can help identify these individuals but is often too expensive for countries with limited health care resources. Low-cost ELISA assays may address this problem, but their use has not yet been widely reported. Methods We developed a SARS-CoV-2 nucleocapsid ELISA and assessed its diagnostic performance on nose and throat swab samples from UK hospitalised patients and sputum samples from patients in Ghana. Results The ELISA had a limit of detection of 8.4 pg/ml antigen and 16 pfu/ml virus. When tested on UK samples (128 positive and 10 negative patients), sensitivity was 58.6% (49.6-67.2) rising to 78.3% (66.7-87.3) if real-time PCR Ct values > 30 were excluded, while specificity was 100% (69.2-100). In a second trial using the Ghanaian samples (121 positive, 96 negative), sensitivity was 52% (42.8-61.2) rising to 72.6% (61.8-81.2) when a > 30 Ct cut-off was applied, while specificity was 100% (96.2-100). Conclusions: Our data show that nucleocapsid ELISAs can test a variety of patient sample types while achieving levels of sensitivity and specificity required for effective community screening. Further investigations into the opportunities that this provides are warranted.


Subject(s)
COVID-19 , SARS-CoV-2 , Enzyme-Linked Immunosorbent Assay , Ghana , Humans , Nucleocapsid , Sensitivity and Specificity
2.
Anal Chim Acta ; 1185: 339002, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1377634

ABSTRACT

As the SARS-CoV-2 pandemic continues to spread, the necessity for rapid, easy diagnostic capabilities could never have been more crucial. With this aim in mind, we have developed a cost-effective and time-saving testing methodology/strategy that implements a sensitive reverse transcriptase loop-mediated amplification (RT-LAMP) assay within narrow, commercially available and cheap, glass capillaries for detection of the SARS-CoV-2 viral RNA. The methodology is compatible with widely used laboratory-based molecular testing protocols and currently available infrastructure. It employs a simple rapid extraction protocol that lyses the virus, releasing sufficient genetic material for amplification. This extracted viral RNA is then amplified using a SARS-CoV-2 RT-LAMP kit, at a constant temperature and the resulting amplified product produces a colour change which can be visually interpreted. This testing protocol, in conjunction with the RT-LAMP assay, has a sensitivity of ∼100 viral copies per reaction of a sample and provides results in a little over 30 min. As the assay is carried out in a water bath, commonly available within most testing laboratories, it eliminates the need for specialised instruments and associated skills. In addition, our testing pathway requires a significantly reduced quantity of reagents per test while providing comparable sensitivity and specificity to the RT-LAMP kit used in this study. While the conventional technique requires 25 µl of reagent, our test only utilises less than half the quantity (10 µl). Thus, with its minimalistic approach, this capillary-based assay could be a promising alternative to the conventional testing, owing to the fact that it can be performed in resource-limited settings, using readily available apparatus, and has the potential of increasing the overall testing capacity, while also reducing the burden on supply chains for mass testing.


Subject(s)
COVID-19 , COVID-19 Testing , Capillaries , Clinical Laboratory Techniques , Cost-Benefit Analysis , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Point-of-Care Systems , Point-of-Care Testing , RNA, Viral/genetics , RNA-Directed DNA Polymerase , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL